Test-time adaptation is the problem of adapting a source pre-trained model using test inputs from a target domain without access to source domain data. Most of the existing approaches address the setting in which the target domain is stationary. Moreover, these approaches are prone to making erroneous predictions with unreliable uncertainty estimates when distribution shifts occur. Hence, test-time adaptation in the face of non-stationary target domain shift becomes a problem of significant interest. To address these issues, we propose a principled approach, PETAL (Probabilistic lifElong Test-time Adaptation with seLf-training prior), which looks into this problem from a probabilistic perspective using a partly data-dependent prior. A student-teacher framework, where the teacher model is an exponential moving average of the student model naturally emerges from this probabilistic perspective. In addition, the knowledge from the posterior distribution obtained for the source task acts as a regularizer. To handle catastrophic forgetting in the long term, we also propose a data-driven model parameter resetting mechanism based on the Fisher information matrix (FIM). Moreover, improvements in experimental results suggest that FIM based data-driven parameter restoration contributes to reducing the error accumulation and maintaining the knowledge of recent domain by restoring only the irrelevant parameters. In terms of predictive error rate as well as uncertainty based metrics such as Brier score and negative log-likelihood, our method achieves better results than the current state-of-the-art for online lifelong test time adaptation across various benchmarks, such as CIFAR-10C, CIFAR-100C, ImageNetC, and ImageNet3DCC datasets.
translated by 谷歌翻译
通过利用和适应到目前为止获得的知识,人类具有识别和区分他们不熟悉的实例的天生能力。重要的是,他们实现了这一目标,而不会在早期学习中恶化表现。受此启发,我们识别并制定了NCDWF的新的,务实的问题设置:新颖的类发现而无需忘记,哪个任务是机器学习模型从未标记的数据中逐步发现实例的新颖类别,同时在先前看到的类别上保持其性能。我们提出1)一种生成伪内表示的方法,该表示的代理(不再可用)标记的数据,从而减轻遗忘的遗忘,2)基于相互信息的正常化程序,可以增强对新型类别的无聊发现,而3)a 3)当测试数据包含所见类别和看不见的类别的实例时,简单的已知类标识符可以有助于广义推断。我们介绍了基于CIFAR-10,CIFAR-100和IMAGENET-1000的实验协议,以衡量知识保留和新型类发现之间的权衡。我们广泛的评估表明,现有的模型在确定新类别的同时灾难性地忘记了先前看到的类别,而我们的方法能够有效地在竞争目标之间平衡。我们希望我们的工作能够吸引对这个新确定的实用问题设定的进一步研究。
translated by 谷歌翻译
对于大多数现有的联合学习算法,每一轮都包括最大程度地减少每个客户端的损失功能,以在客户端学习最佳模型,然后在服务器上汇总这些客户端模型。客户端的模型参数的点估计并未考虑到每个客户端估计的模型中的不确定性。但是,在许多情况下,尤其是在有限的数据设置中,考虑到客户模型中的不确定性以实现更准确和健壮的预测是有益的。不确定性还为其他重要任务提供了有用的信息,例如主动学习和分布(OOD)检测。我们提出了一个贝叶斯联合学习的框架,每个客户都使用其培训数据侵入后验预测分布,并提出各种方法,以在服务器上汇总这些特定于客户端的预测分布。由于交流和汇总预测分布可能具有挑战性且昂贵,因此我们的方法基于将每个客户的预测分布提炼成一个深层的神经网络。这使我们能够利用标准联合学习的进步,也可以为贝叶斯联邦学习。与最近试图估算每个客户模型不确定性的最近作品不同,我们的工作也没有做出任何限制性假设,例如客户后分布的形式。我们评估了我们在联合环境中的分类方法,以及在联邦设置中的积极学习和OOD检测,我们的方法在其上优于各种现有的联合学习基线。
translated by 谷歌翻译
扩散概率模型已被证明在几个竞争性图像综合基准上产生最先进的结果,但缺乏低维,可解释的潜在空间,并且在一代中慢慢。另一方面,变形AutoEncoders(VAES)通常可以访问低维潜空间,但表现出差的样品质量。尽管最近的进步,VAE通常需要潜在代码的高维层次结构来产生高质量样本。我们呈现DiffUsevae,一种新的生成框架,它在扩散模型框架内集成了VAE,并利用这一点以设计用于扩散模型的新型条件参数化。我们表明所得模型可以在采样效率方面提高无条件扩散模型,同时还配备了具有低维VAE的扩散模型推断潜码。此外,我们表明所提出的模型可以产生高分辨率样本,并展示与标准基准上的最先进模型相当的合成质量。最后,我们表明所提出的方法可用于可控制的图像合成,并且还展示了图像超分辨率和去噪等下游任务的开箱即用功能。为了重现性,我们的源代码将公开可用于\ url {https://github.com/kpandey008/diffusevae}。
translated by 谷歌翻译
在测试时间适应(TTA)中,给定在某些源数据上培训的模型,目标是使其适应从不同分布的测试实例更好地预测。至关重要的是,TTA假设从目标分布到Finetune源模型,无法访问源数据或甚至从目标分布到任何其他标记/未标记的样本。在这项工作中,我们考虑TTA在更务实的设置中,我们称为SITA(单图像测试时间适应)。这里,在制作每个预测时,该模型只能访问给定的\ emph {单}测试实例,而不是实例的\ emph {批次}。通常在文献中被考虑。这是由逼真的情况激励,其中在按需时尚中需要推断,可能不会被延迟到“批量 - iFY”传入请求或者在没有范围的边缘设备(如移动电话中)发生推断批处理。 SITA的整个适应过程应在推理时间发生时非常快。为了解决这个问题,我们提出了一种新颖的AUGBN,用于仅需要转发传播的SITA设置。该方法可以为分类和分段任务的单个测试实例调整任何特征训练模型。 AUGBN估计仅使用具有标签保存的转换的一个前进通过的给定测试图像的看不见的测试分布的正常化统计。由于AUGBN不涉及任何反向传播,与其他最近的方法相比,它显着更快。据我们所知,这是仅使用单个测试图像解决此硬调整问题的第一个工作。尽管非常简单,但我们的框架能够在我们广泛的实验和消融研究中对目标实例上应用源模型来实现显着的性能增益。
translated by 谷歌翻译
广泛的应用需要学习图像生成模型,其潜在空间有效地捕获数据分布中存在的变化的高级别因数。模型代表通过其潜在空间的这种变化的程度可以通过其在平滑图像之间插值的能力来判断。然而,在所生成的图像之前映射固定的大多数生成模型导致插值轨迹缺乏平滑度并且包含降低质量的图像。在这项工作中,我们提出了一种新的生成模型,该模型在插值轨迹之前学习灵活的非参数,调节在一对源图像和目标图像上。而不是依赖确定性的插值方法(例如潜伏空间中的线性或球形插值),我们设计了一种使用潜在二阶神经常规差分方程的两个给定图像之间的轨迹分布的框架。通过重建和对抗性损失的混合组合,发电机训练以从这些轨迹将采样点映射到现实图像的序列,该轨迹的序列是从源进入目标图像的平稳转换。通过综合定性和定量实验,我们展示了我们的方法在生成改进质量的图像方面的有效性以及对任何对任何对实际来源和目标图像的平滑插值轨迹学习多元化分布的能力。
translated by 谷歌翻译
Object movement identification is one of the most researched problems in the field of computer vision. In this task, we try to classify a pixel as foreground or background. Even though numerous traditional machine learning and deep learning methods already exist for this problem, the two major issues with most of them are the need for large amounts of ground truth data and their inferior performance on unseen videos. Since every pixel of every frame has to be labeled, acquiring large amounts of data for these techniques gets rather expensive. Recently, Zhao et al. [1] proposed one of a kind Arithmetic Distribution Neural Network (ADNN) for universal background subtraction which utilizes probability information from the histogram of temporal pixels and achieves promising results. Building onto this work, we developed an intelligent video surveillance system that uses ADNN architecture for motion detection, trims the video with parts only containing motion, and performs anomaly detection on the trimmed video.
translated by 谷歌翻译
Only limited studies and superficial evaluations are available on agents' behaviors and roles within a Multi-Agent System (MAS). We simulate a MAS using Reinforcement Learning (RL) in a pursuit-evasion (a.k.a predator-prey pursuit) game, which shares task goals with target acquisition, and we create different adversarial scenarios by replacing RL-trained pursuers' policies with two distinct (non-RL) analytical strategies. Using heatmaps of agents' positions (state-space variable) over time, we are able to categorize an RL-trained evader's behaviors. The novelty of our approach entails the creation of an influential feature set that reveals underlying data regularities, which allow us to classify an agent's behavior. This classification may aid in catching the (enemy) targets by enabling us to identify and predict their behaviors, and when extended to pursuers, this approach towards identifying teammates' behavior may allow agents to coordinate more effectively.
translated by 谷歌翻译
We propose an approach for semantic imitation, which uses demonstrations from a source domain, e.g. human videos, to accelerate reinforcement learning (RL) in a different target domain, e.g. a robotic manipulator in a simulated kitchen. Instead of imitating low-level actions like joint velocities, our approach imitates the sequence of demonstrated semantic skills like "opening the microwave" or "turning on the stove". This allows us to transfer demonstrations across environments (e.g. real-world to simulated kitchen) and agent embodiments (e.g. bimanual human demonstration to robotic arm). We evaluate on three challenging cross-domain learning problems and match the performance of demonstration-accelerated RL approaches that require in-domain demonstrations. In a simulated kitchen environment, our approach learns long-horizon robot manipulation tasks, using less than 3 minutes of human video demonstrations from a real-world kitchen. This enables scaling robot learning via the reuse of demonstrations, e.g. collected as human videos, for learning in any number of target domains.
translated by 谷歌翻译
The geospace environment is volatile and highly driven. Space weather has effects on Earth's magnetosphere that cause a dynamic and enigmatic response in the thermosphere, particularly on the evolution of neutral mass density. Many models exist that use space weather drivers to produce a density response, but these models are typically computationally expensive or inaccurate for certain space weather conditions. In response, this work aims to employ a probabilistic machine learning (ML) method to create an efficient surrogate for the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM), a physics-based thermosphere model. Our method leverages principal component analysis to reduce the dimensionality of TIE-GCM and recurrent neural networks to model the dynamic behavior of the thermosphere much quicker than the numerical model. The newly developed reduced order probabilistic emulator (ROPE) uses Long-Short Term Memory neural networks to perform time-series forecasting in the reduced state and provide distributions for future density. We show that across the available data, TIE-GCM ROPE has similar error to previous linear approaches while improving storm-time modeling. We also conduct a satellite propagation study for the significant November 2003 storm which shows that TIE-GCM ROPE can capture the position resulting from TIE-GCM density with < 5 km bias. Simultaneously, linear approaches provide point estimates that can result in biases of 7 - 18 km.
translated by 谷歌翻译